Gender Differences in Quality-Adjusted Survival Using a Health-Utilities Index

Robert M. Kaplan, PhD, Pennifer Erickson, PhD

Purpose:	Women live longer than men but experience high morbidity during later years. We attempt to represent life expectancy with adjustments for quality of life for men and women in the United States.
Data	Survival estimates were obtained from Vital Statistics of the United States Life Tables. Quarces:
Quality-of-life data were obtained for 12,220 participants, aged $32-85$ years, in the 1982-1984 National Health and Nutrition Examination Survey I Epidemiologic Follow-Up	
Study (NHEFS).	

Introduction

Women in the United States live an average of 5.38 years longer than men. ${ }^{1}$ However, studies on health-related quality of life consistently show that women experience greater morbidity than men. ${ }^{2}$ Men are more likely to die suddenly of heart disease or accidents, while women are more likely to live longer but experience longer periods of disability. ${ }^{2-5}$ The literature on morbidity and mortality among women has been reviewed in several places, ${ }^{6,7}$ and concerns about morbidity in older women led to the development and funding of the Women's Health Initiative (WHI), a series of overlapping clinical trials and observational studies involving more than 164,000 women. ${ }^{8}$ The literature can be confusing because there are several reports showing that women experience significant morbidity in late life. ${ }^{2,5,9}$ However, several

[^0]recent studies suggest that health-related quality of life may be better for older women in comparison with older men when matched for diagnosis of coronary artery disease ${ }^{10}$ or heart failure. ${ }^{11}$ Other studies have suggested that emotional vitality ${ }^{12}$ and daytime activity^{13} may be higher in older women than in older men. However, most of these studies used convenience rather than population samples. The measures of quality of life varied from study to study and none of the reports offers combined indexes of morbidity and mortality. This is a concern because subjects in these studies are the survivors from their birth cohorts.

If women experience lesser mortality but greater morbidity, it is not clear how to provide populationbased estimates of health status. If measures of mortality are chosen, women have better health status. On the other hand, using measures of morbidity, men have better health status in some studies, and women have better health status in other studies. We have proposed measures of survival that make adjustments for quality of life. ${ }^{14-17}$ In order to represent total health status, new methods of analysis, known as Quality-Adjusted Survival Analysis, are required.

 estimates to that used in the previous study. The QWB

 ern California. Further, this study reports outcomes

 Study (NHEFS). This study is based on a much larger tion Examination Survey Epidemiologic Follow-Up The study reported in this paper uses data from the
1982-1984 United States National Health and Nutriis not known whether QWB results generalize to other
population-based measures. QWB has not been used for population studies, and it Scale, ${ }^{19}$ is used in a wide variety of studies. However, the measure, known as the Quality of Well-Being (QWB) measure of health-related quality of life was used. This seems unreasonable to estumate U.S. values on the basis
of a selected region. A third limitation was that a single geographically confined to Southern California. It able. A second problem was that the analysis was particular age group was small and potentially unreli-

 Although the mortality data came from the U.S. popuThe previous study had several significant limitations. health status was better for men until about age 45 and
better for women after age 45 . women than on men. Analysis suggested that overall

 quality of life because death is ignored. Death is clearly
an important health outcome. portant. On the ouker hand, focus on morbidity or outcomes when both morbidity and mortality are im-
portant. On the other hand, there are also biases sungenfena surpqord seq s!sifeue [entums jeuon!̣pen
 Both are given 1.0 for being alive. same score. A perso the same as someone who is healthy.
ible coma is scored difficulty is that everyone who remains alive is given the 1.0 while those who are dead are coded as 0.0 . The Mortality or survival analysis codes all those living as

 the sample was white (85.1%), African American

 12,220 had data that could be used to estimate the HUI ipants who were medically examined in NHANES I which was conducted between 1982 and 1984. The
follow-up study population included the 14,407 particwhich was conducted between 1982 and 1984. The The analysis reported in this paper used the
NHANES I Epidemiologic Follow-Up Survey (NHEFS),
 of 179 people $25-74$ years of age of whom 14,407 pəpnpu! गdures I SANVHN 2чL sara久 $\ddagger 2$ pue I jo
 os suonenasqo әчı ısn!pe ol pasn әлам sampaәoıd su! bearing age, and the elderly were oversampled. Weight malnutrition, persons of low income, women of childorder to assure representation of those at high risk for survey began in 1971 and was completed in 1975. In Americans were excluded from the sample frame. The States. Only persons living on reservations for Native ian noninstitutionalized population of the United sample of approximately 28,000 people from the civil The National Health and Nutrition Examination Sur
vey I (NHANES I) was based on a national probability

ages
 based on the entire U.S. population and use an age

[enyms
In order to calculate quality-adjusted surival. we used
several data sources.

3 $\frac{3}{7}$ $\frac{2}{4}$

morbidity and mortality

 support the generalizability of the results. and policy analysis. Variation in the methods will help 2010 and has received greater use in population studies
were successfully traced. A strong association between smoking and loss to follow-up indicates that the effects of smoking on mortality, especially at younger ages, should be interpreted with caution. Among those aged 55 years and over, the proportion lost to follow-up is quite small relative to the proportion deceased. Thus, in these age groups, there should be relatively little bias as a result of loss to follow-up.

Health-Utilities Index Mark I

The HUI Mark I ${ }^{20,21}$ was used to estimate quality of life. These estimates were used to quality adjust the survival data. The HUI Mark I assesses four major concepts of health-related quality of life: physical function, which includes mobility and physical activity; role function, which includes self-care and role activity; social-motional function, which includes well-being and social activity; and health problems. The concepts and levels of function within the concepts comprise a healthstatus classification scheme. Individuals are categorized into one and only one level within each concept according to their functional status at the time the data were collected. The HUI is scored using a complex multiattribute weighting system. The specific weights are given in the study by Feeny and colleagues. ${ }^{23}$

The reliability and validity of the HUI has been summarized by Feeny et al. ${ }^{23}$ One study demonstrated the reliability of the HUI in the Canadian general social survey. The test-retest reliability was estimated to be 0.77 . Perfect reliability is not expected since health status is presumed to change over time. The validity evidence comes from several population studies including the National Health and Nutrition Examination Survey in which the HUI was shown to predict future health states. ${ }^{24}$ Clinical studies have shown a variety of differences between diagnostic groups. For example, children with extremely low birth weight had lower HUI scores than control children when both groups were measured at age 8 years. ${ }^{25}$

The development of an HUI Mark I analog using data collected in NHEFS, the NHEFS-HUI, builds on a similar project that was done using data from the National Health Interview Survey. This project developed a six-step model for conducting retrospective analyses that was used to guide the construction of the health-related quality-of-life measure that is used in this analysis to adjust survival data. ${ }^{14,15}$ Following the steps in this model has been shown to result in a reliable and valid summary of population health status. In this study, we apply the imputation method to derive HUI scores from data collected in a national survey.

Figure 1. Smoothed and fitted polynomial curves for men and women. Dashed lines show 95% confidence intervals.

Results

In order to estimate Quality-Adjusted Life Expectancy, several calculations were required. First, we estimated life expectancy using the United States Life Tables. ${ }^{22}$ These tables show current life expectancies using 1-year intervals. Next, the NHEFS data were broken down by age. The NHANES Epidemiologic Follow-Up Survey includes values for individuals between the ages of 32 and 85. Quality-adjusted survival is the product of the NHEFS-HUI value at each age and the proportion of the population surviving to that age interval. The mean value for the index for young individuals is near 0.85 , while those later in the life span have values closer to 0.20 . These differences reflect the impact of both death and quality of life.

In order to obtain smooth functions for both men and women, we fit simple polynomials to these curves. For men, the polynomial equation was:
estimated NHEFS-HUI $=0.55007+0.0169 \times$ age $-0.000259 \times$ age 2

For women the equation was:
estimated NHEFS-HUI $=0.37293+0.02126 \times$ age $-0.0002737 \times$ age 2

The fitted lines are shown graphically in Figure 1. As the figure demonstrates, men score higher on the mortality-adjusted HUI early in life. However, at about age 48, the curves intersect. Thereafter, the qualityadjusted survival is higher for women than it is for men. To evaluate these functions statistically, multiple regression analysis was used to estimate HUI as a function of age, gender, and the interaction of age and gender. These analyses were done twice, once using the combined index of morbidity and mortality and once using the morbidity only or live-person index.

（690．0） 196.0	（9G00）9 960	（6L00） 9760	（020 0）096．0	（ 7200 ）896．0	（8900） 696.0	［巴！⿰OS
（LZI＇0）\ddagger O60	（001．0） 696.0	（1900）6L6．0	（LG00）986\％	（G010） 2760	（1600） 696.0	วoy
（9900）886．0	（990．0） 876.0	（ $\angle 700$ ） $\mathbf{~ C 6 \% 0}$	（ 970 ）$\ddagger 96.0$	（8900） 6860	（ $\ddagger 900$ ）L¥6．0	suวp\％o．d
（6010）L680．	（680．0） 868.0	（6800） 686.0	（9800）8660	（ $\mathbf{6 6 0} 0$ ）876．0	（760．0）986．0	［emskud
（69\％0）0190	（668．0） $197^{\circ} 0$	（081．0）［ 78.0	（ $\angle 910$ ） 6280	（7I\＆＇0）69900	（9LE0） 6390	IIV 1 nH
（ $626^{\circ} 0$ ） 959.0	（ 2860 ）66L\％	（0810）［38．0	（ 291.0 ） $6 \angle 8{ }^{\circ} 0$	（68\％0）0才L゙0	$(0360) 88 L^{\circ} 0$	8UM！INH
$\begin{array}{r} 6 I Z 8=N \\ \text { uวuo } \end{array}$	$\begin{array}{r} 8887=\mathrm{N} \\ \text { uวW } \end{array}$	$\begin{array}{r} \ell \text { III }=\mathbf{N} \\ \text { uวwo } \end{array}$	$\begin{array}{r} 989=\mathbf{N} \\ \mathbf{u} \partial \mathrm{N} \end{array}$	$\begin{array}{r} 8 L 6 L=\mathrm{N} \\ \text { mamoM } \end{array}$	$\begin{array}{r} 6567=N \\ 4 \partial \mathrm{~N} \end{array}$	әре！¢е
09＜		07＞		ITV		

 Figure 2．Male minus
data and fitted curve．

statistically significant $(p<0.01)$ except for the com－ sample size，t－tests for all comparisons in Table 1 are physical subscale（all subjects）．Because of the large obtained higher scores than women，except for the
 index that includes death shows women scoring higher
than men，while the index excluding death reveals the group．However，for those older than 60 years，the has no effect because there were no deaths in this age of age or younger，inclusion of death in the HUI score than age 40 and those older than 60 ．For those 40 years data are shown separately for all subjects，those younger table also presents scores for the HUI subscales．The who have died）and for all those living in 1984．The females on the HUI for all subjects（including those
 women reduces to a 1. －3year advantage with adjust－
ments for quality of life． other words，the 5.38 －year life－expectancy advantage for
women reduces to a 1.3 －year advantage with adjust－ was 31.8 years for men and 33.1 years for women．In quality adjustments，the quality－adjusted life expectancy for women．Thus，for 32 －year－olds，women have a 5.38
life－expectancy advantage．Using NHEFS－HUI scores as for women．Thus，for 32 －year－olds，women have a 5.38 uals younger than age 32 ．The current life expectancy
among 32 year－olds was 39.45 for men and 44.83 years NHEFS database did not have information on individ－ expectancy at birth could not be estimated because the and women in the NHEFS population．The total life

 advantage of being female becomes progressively stron－ with a female advantage thereafter．Further，the health the healch advantage of being male until about age 48 ， figure was created by subtracting the differences be－
tween the fitted curves at each age．The figure shows scores for men at each age．The smooth line on the ity－adjusted NHEFS－HUI scores for women from the cycle．The jagged line shows the raw difference of the
means．This line was created by subtracting the mortal－

Discussion

Using data from the NHANES and standard life tables, we evaluated differences between the health status for men and women in the United States. These estimates suggest that, on average, women live longer than men. However, during the years toward the end of life, women experience a lower quality of life than do men. Although women have a live-expectancy advantage, adjustments for quality of life reduced the advantage significantly.

This study closely replicates an earlier investigation. ${ }^{18}$ However, the earlier study was flawed for several reasons. First, the data in the previous study were from a single community in California. Further, the earlier study had a small sample and used data from a single quality-of-life measure. This study uses a larger sample size and a sample that is representative of the U.S. population. Further, a completely different quality-oflife index was used. Nevertheless, the results are strikingly similar. The similarity of these findings confirms their robustness.

Similar findings have also been reported for the Canadian population. ${ }^{26}$ Thus, despite the limitations, we have reason to believe the results are consistent with other research. Together, these studies indicate that when measured independently, both morbidity and mortality are incomplete measures. As suggested over three decades ago, we need combined index numbers to summarize population health. ${ }^{27}$

There are many different explanations for the finding that women have lower mortality but more morbidity in later life. In order to evaluate the results, we must first consider the issue of mortality differences. Population statistics show that men are more likely than women to die at all ages throughout the life span. Mortality ratios can be formed by dividing male by female deaths, standardized per 100,000 persons in the population. Even at age 1 year, the ratio is 1.26 , suggesting that there are 1.26 l-year-old male deaths for each 1-year-old female death. The peak ratio is during adolescence and early adulthood. Between the ages of 15 and 24 , there are 3.1 male deaths for each female death. Thereafter, the ratio falls off as a function of age. Yet, even in the 85-and-older category, 1.27 males die for each female who dies. It is interesting that our analysis shows that there was a male advantage early in the life span, precisely when the male-female mortality ratio is the highest. The reason men have a higher mortality-adjusted NHEFS-HUI score is that men experience higher quality of life during the first four decades of life. Further, the total number of deaths during these decades is very small.

Another explanation for the differences is that men and women are affected by different diseases. Men are more likely to be victims of diseases or problems that cause death early in life. There are differential rates of
death from several causes. Men, for example, are 3.9 times more likely to be victimized by homicide than are women. There are seven causes of death for which men are at least twice as likely to die as women. These are homicide, lung cancer, suicide, chronic obstructive pulmonary disease, accidents, cirrhosis of the liver. and heart disease. Each of these is believed to be related to individual behavior. For example, lung cancer and chronic obstructive pulmonary disease are both caused primarily by smoking cigarettes. Homicide, accidents, and cirrhosis of the liver each are associated with alcohol use. ${ }^{28}$ Suicide is a behavioral act, and the relationship between behavior and heart disease has been discussed extensively. ${ }^{29}$ These data suggest that men are more likely to put themselves at risk for early and sudden death, while women live longer to be affected by slow and disabling chronic diseases. Women, for example, are more likely to experience nonfatal but prevalent autoimmune diseases and osteoporosis.

There are several important limitations to this study. First, the NHEFS does not have quality-of-life data for individuals <32 years. Thus, differences during the first three decades of life are excluded from the analysis. A second concern is that quality-of-life scores for the mortality-adjusted HUI Mark I were imputed rather than directly measured. The imputation introduces some imprecision in the estimates. Further, the only data set available for these analyses was completed in 1984. Although the observations are clearly dated, we suspect that they would be similar to more current data. Confirmation of this in future studies is necessary.
In summary, quantifying health outcome for men and women can be difficult. Summary measures that emphasize mortality show a strong advantage to being female, while measures of quality of life suggest some advantages to being male. Combined indexes of morbidity show a male advantage prior to midlife and a female advantage thereafter. The life-expectancy advantage for women is somewhat reduced when there are adjustments for quality of life. Comprehensive summaries of population health must combine morbidity and mortality into a common index. ${ }^{27}$ Independently, morbidity and mortality each give an incomplete picture of population health.

Supported in part by Grant PO 1-AR-40423 from the National Institute of Arthritis, Musculoskeletal, and Skin Disorders of the National Institutes of Health.

References

1. Births and Deaths, United States, 1996. Monthly Vital Statistics Report 1996;46:S2.
2. Wingard DL. The sex differential in morbidity, mortality, and lifestyle. Ann Rev Pub Health. 1984;5:433-58.
3. Verbrugge LM. The twain meet: empirical explanations of sex differences in health and mortality. J Health Soc Behav 1989;30:282-304.

 16-8Lz:86:8661 66-681:L6:866I 3unT 38-8LI: $58: 9661$ о 06-617:8:9661 68-8Lt:6:9661 чэгеаรау

The Quantity and Quality of Physical Activity Among Those Trying to Lose Weight

Paul M. Gordon, PhD, Gregory W. Heath, DHSc, Alan Holmes, MBA, Dan Christy, MPA

Background: Regular exercise to elicit caloric expenditure is an important component for achieving weight loss. The Healthy People 2000 objectives recommend regular sustained physical activity lasting 30 minutes, five days per week (Objective 1.3) particularly for weight loss. Moreover, this recommendation has been restated for weight loss and overall health benefits in the Centers for Disease Control and Prevention / American College of Sports Medicine (CDC/ACSM) statement and Surgeon General's Report (SGR) on Physical Activity and Health. Thus, we sought to identify the relative quality and quantity of physical activity among people trying to lose weight.
Design: Cross-sectional self-reported data from the West Virginia Behavioral Risk Factor Surveillance System (BRFSS) were used. The BRFSS is a state-based telephone survey of adults that uses a multistage cluster design based on the Waksberg method of random-digit dialing. Data from 2769 men and 4490 women were obtained from the 1992, 1994, and 1996 surveys.
Results: Half (49.6%) of individuals trying to lose weight did not engage in any physical activity. Further, only 15% of respondents trying to lose weight reported exercising regularly. Nevertheless, those trying to lose weight were more likely (OR [odds ratio] $=1.3 ; 95 \% \mathrm{CI}$ [confidence interval], 1.14, 1.51, $p<0.001$) to exercise regularly than those not trying to lose weight. In particular, women trying to lose weight were significantly more likely ($\mathrm{OR}=$ $1.45 ; 95 \% \mathrm{CI}, 1.22,1.74, p<0.001$) to exercise regularly than women not trying to lose weight. Conversely, men trying to lose weight were no more likely to exercise regularly ($p=$.23) than men not trying to lose weight. Among respondents who were using exercise for weight loss, only 14.7% were expending $\geq 1000 \mathrm{kcal} /$ week and 18.2% were expending $\geq 500 \mathrm{kcal} /$ week. Weekly expenditure rates of $\geq 1000 \mathrm{kcal} /$ week were more likely to occur among men (17%) than women (13.8%), in younger age groups, and among those with higher educational attainment.
Conclusion: These data suggest that while certain individuals trying to lose weight are more likely to engage in regular physical activity, most persons trying to lose weight have not adopted regular physical activity as part of their weight loss practice. These results suggest that public health efforts to effectively integrate physical activity into weight control practices of West Virginians have been minimally successful.
Medical Subject Headings (MeSH): physical fitness, exercise, weight loss, guidelines, public health, leisure activity (Am J Prev Med 2000;18(1):83-86) © 2000 American Journal of Preventive Medicine

Introduction

More Americans are overweight now than ever before ${ }^{1}$ and with the addition of obesity as a primary risk factor for cardiovascular disease, ${ }^{2}$ the public health community has made strong appeals for

[^1]overweight people to pursue weight loss. Regular exercise to elicit caloric expenditure is considered an important component for achieving weight loss and for long-term weight control. ${ }^{3}$ The Healthy People 2000 objectives recommend regular sustained activity lasting 30 minutes, five days per week (Objective 1.3), particularly for weight loss. ${ }^{4}$ Furthermore, this recommendation has been restated for overall health benefits. Currently, a minimum of 150 kcal per day or 1000 kcal per week of physical activity has been recommended. ${ }^{3}$ Given these recommendations and the rising prevalence of overweight people in the United States, we sought to identify the weight-loss practices (Table 1), and specifically identify the quality and quantity of physical activity, among people trying to lose weight.
American Journal of Preventive Medicine，Volume 18，Number 1

					＇xวpul sseu ¢poq＇IWg
9.1	688	6．97	－	± 18	иәшом
67	$\angle 6$	$8{ }^{\text {\％}}$	－	LI＇g8	บәW
6	$\ddagger 8$	8.9	－	F\％8	$z^{\text {m／} / 8 \%} 0 \mathrm{gz}<\mathrm{ING}$
8.6	$\angle 6$	师	I¢	668	иәшом
6	81	897	L¢6	Lz	uәW
9.1	87	9.9	Lig	98	［ ${ }^{\text {PoL }}$
วuо¢	วsฺృวхх	2u0¢	（\％）	（\％）	
	pue	Supe！d	$z^{\text {m／gid }}$		
	perd ssol		0 ＇GE $<$ ING		

 physical activity as part of their weight－loss practice．

 sןепри！ри！и！̣ллә八 पภ̊

uo！ssnos！c／stinsoy

 from the compendium of physical activities．${ }^{6}$

号 | $\overline{3}$ |
| :--- |
| $\frac{8}{3}$ |
| $\frac{8}{8}$ |
| 8 |

if

－
≤ 00

 －ind ssof－1ч of even greater intrigue is that only 14.7% of those

Table 2. Percentage of individuals with weekly caloric expenditure rates $\geq 1000 \mathrm{kcal}$ by weight control status from the 1949. 1994, and 1996 Behavioral Risk Factor Survey

Characteristics	Sample size	$\geq 1000 \mathrm{Kcal} / \mathrm{wk}$		Odds ratio	(95\% CI)
		Trying to lose weight (\%)	Not trying to lose weight (\%)		
Total	7,258	8.9	6.1	1.49*	1.24, 1.8
Males \dagger	2,769	10.7	7.7	1.43*	1.07, 1.92
Females	4,489	8.1	4.9	1.7*	1.3, 2.19
Age					
18-24	671	15.4	14.5	1.07	.66, 1.73
25-34	1,243	10.2	9.5	1.08	.73, 1.61
35-44	1,525	10.4	6.7	1.62*	1.1, 2.3
45-54	1,162	8.2	4.9	1.71*	1.03, 2.84
55-64	937	5.2	4.2	1.2	.63. 2.38
65+	1,703	5.7	2.3	2.62*	1.46, 4.7
Education					
$<12 \mathrm{yrs}$	2,691	5.9	3	2.0*	1.33, 3.0
12 yrs	1,962	7.5	4.9	1.57*	1.06, 2.34
Some college (13-15 yrs)	1,065	10.8	7.7	1.45	.93, 2.26
College ($16+\mathrm{yrs}$)	1,130	13.9	12.4	1.14	.78, 1.66
Income					
< \$10,000.00	217	4.8	4.5	1.06	.24, 4.4
+10,000-19,999	564	4.1	3.5	1.15	.43, 3.04
\$20,000-34,999	724	8.3	6.1	1.4	.76, 2.6
\$35,000-49,999	309	16.7	6.7	2.8*	1.25, 6.3
$>\$ 50,000$	305	19.3	12.9	1.6	.83, 3.12
BMI $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$	6,538	8.7	5.9	1.5*	1.24, 1.81

${ }^{*} p<0.05$, between trying to lose weight vs not trying to lose weight; \dagger males who were trying to lose weight were $1.36(95 \% \mathrm{Cl} \pm 0.47)$ times more likely to be expending $\geq 1000 \mathrm{kcal}$ per week than women who were trying to lose weight; BMI, body mass index; CI, confidence interval
activity questions, a separate section of the BRFSS asks participants whether they are trying to lose weight and what their strategies for weight loss are, which may include the use of physical activity and/or caloric restriction and reduced fat intake. However, it is important to understand that the section of the BRFSS on weight loss is asked following the physical activity questions, which appears to minimize any bias of physical activity reporting by the desire for weight loss.

Efforts to increase awareness using a variety of community channels are needed throughout various demographic groups. The sociodemographic differences among persons using physical activity for weight loss observed in the present investigation are comparable to other findings. We observed that women, those with a lower socioeconomic status, and older individuals were less likely to attain the 1000 kcal per week recommendation (Table 2). Nevertheless, so few people are attaining the current recommendations for physical activity that direct and accurate messages to communities at all levels and to a wide array of individuals are needed. Creating physical and social environments that are more conducive to exercise may help to reduce
barriers that may prohibit individuals from achieving these recommendations. ${ }^{7}$ Moreover, policies that allow for more physical activity to be incorporated throughout the day may also help. One policy that may increase public awareness is the use of preventive counseling by primary care providers. Studies have shown this to be an effective means for improving health behaviors. ${ }^{8}$ In light of this finding, however, a recent investigation has found a current lack of preventive counseling by primary care providers in the United States. ${ }^{9}$ Physicians reported offering counseling for physical activity during only 19.1% of office visits. Furthermore, preventive counseling was lowest in the South, where cardiovascular disease rates are among the highest.

Conclusion

In addition to increasing awareness of the physical activity and health message, physical activity specialists need to consider the current lack of specificity of the message. The recommended dosage of physical activity needs to be specific to a particular health outcome, such as weight loss. Haskell ${ }^{10}$ has suggested that differ-
of energy-dense convenien
the portion sizes of food.
better instured on how to elon and how to monitor individuals trying to lose or maintain weight need to be
weight loss and weight maintenance purposes. Second, identify a specific volume of activity necessary for Within this statement, two distinct objectives should be
addressed. First, a clear and tailored message should weight control message be developed for the public.
Within this statement, two distinct objectives should be more meaning to the public. We propose that a specific comes may be more easily communicated and provide sages that are tailored to improve specific health out ent doses of activity are necessary to modify various risk
factors. As such, several narrow physical activity mesinternational Proceedings
man Rinetics, 1994:1030-9.

[^0]: From the University of California, San Diego, La Jolla, (Kaplan), San Diego, California; and Pennsylvania State University (Erickson), Hershey, Pennsyivania

 Address correspondence and reprint requests to: Robert M. Kaplan, PhD, Department of Family and Preventive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0628. E-mail: rkaplan@ucsd.edu.

[^1]: From the West Virginia University School of Medicine (Gordon), Morgantown, West Virginia; Cardiovascular Health Branch mail stop K45, Centers for Disease Control and Prevention (Heath), Aulanta, Georgia; Office of Epidemiology and Health Promotion, West Virginia Bureau for Public Health (Holmes), Charleston, West Virginia; and Health Statistics, West Virginia Bureau for Public Health (Christy), Charleston, West Virginia

 Send correspondence and reprint requests to: Paul M. Gordon, PhD, West Virginia University, School of Medicine, P.O. Box 9227, Morgantown, WV 26506. E-mail: pgordon@mail.hsc.wvu.edu.

